Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(3): e16594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418376

RESUMO

The availability of alginate, an abundant macroalgal polysaccharide, induces compositional and functional responses among marine microbes, but these dynamics have not been characterized across the Pacific Ocean. We investigated alginate-induced compositional and functional shifts (e.g., heterotrophic production, glucose turnover, hydrolytic enzyme activities) of microbial communities in the South Subtropical, Equatorial, and Polar Frontal North Pacific in mesocosms. We observed that shifts in response to alginate were site-specific. In the South Subtropical Pacific, prokaryotic cell counts, glucose turnover, and peptidase activities changed the most with alginate addition, along with the enrichment of the widest range of particle-associated taxa (161 amplicon sequence variants; ASVs) belonging to Alteromonadaceae, Rhodobacteraceae, Phormidiaceae, and Pseudoalteromonadaceae. Some of these taxa were detected at other sites but only enriched in the South Pacific. In the Equatorial Pacific, glucose turnover and heterotrophic prokaryotic production increased most rapidly; a single Alteromonas taxon dominated (60% of the community) but remained low (<2%) elsewhere. In the North Pacific, the particle-associated community response to alginate was gradual, with a more limited range of alginate-enriched taxa (82 ASVs). Thus, alginate-related ecological and biogeochemical shifts depend on a combination of factors that include the ability to utilize alginate, environmental conditions, and microbial interactions.


Assuntos
Alginatos , Alteromonadaceae , Oceano Pacífico , Células Procarióticas , Glucose , Água do Mar/microbiologia
2.
Microbiome ; 11(1): 265, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007474

RESUMO

BACKGROUND: The RCA (Roseobacter clade affiliated) cluster belongs to the family Roseobacteracea and represents a major Roseobacter lineage in temperate to polar oceans. Despite its prevalence and abundance, only a few genomes and one described species, Planktomarina temperata, exist. To gain more insights into our limited understanding of this cluster and its taxonomic and functional diversity and biogeography, we screened metagenomic datasets from the global oceans and reconstructed metagenome-assembled genomes (MAG) affiliated to this cluster. RESULTS: The total of 82 MAGs, plus five genomes of isolates, reveal an unexpected diversity and novel insights into the genomic features, the functional diversity, and greatly refined biogeographic patterns of the RCA cluster. This cluster is subdivided into three genera: Planktomarina, Pseudoplanktomarina, and the most deeply branching Candidatus Paraplanktomarina. Six of the eight Planktomarina species have larger genome sizes (2.44-3.12 Mbp) and higher G + C contents (46.36-53.70%) than the four Pseudoplanktomarina species (2.26-2.72 Mbp, 42.22-43.72 G + C%). Cand. Paraplanktomarina is represented only by one species with a genome size of 2.40 Mbp and a G + C content of 45.85%. Three novel species of the genera Planktomarina and Pseudoplanktomarina are validly described according to the SeqCode nomenclature for prokaryotic genomes. Aerobic anoxygenic photosynthesis (AAP) is encoded in three Planktomarina species. Unexpectedly, proteorhodopsin (PR) is encoded in the other Planktomarina and all Pseudoplanktomarina species, suggesting that this light-driven proton pump is the most important mode of acquiring complementary energy of the RCA cluster. The Pseudoplanktomarina species exhibit differences in functional traits compared to Planktomarina species and adaptations to more resource-limited conditions. An assessment of the global biogeography of the different species greatly expands the range of occurrence and shows that the different species exhibit distinct biogeographic patterns. They partially reflect the genomic features of the species. CONCLUSIONS: Our detailed MAG-based analyses shed new light on the diversification, environmental adaptation, and global biogeography of a major lineage of pelagic bacteria. The taxonomic delineation and validation by the SeqCode nomenclature of prominent genera and species of the RCA cluster may be a promising way for a refined taxonomic identification of major prokaryotic lineages and sublineages in marine and other prokaryotic communities assessed by metagenomics approaches. Video Abstract.


Assuntos
Roseobacter , Roseobacter/genética , Água do Mar/microbiologia , Metagenoma , Filogenia , Oceanos e Mares , Metagenômica
3.
Nat Commun ; 14(1): 6141, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783696

RESUMO

Major biogeographic features of the microbial seascape in the oceans have been established and their underlying ecological mechanisms in the (sub)tropical oceans and the Pacific Ocean identified. However, we still lack a unifying understanding of how prokaryotic communities and biogeographic patterns are affected by large-scale current systems in distinct ocean basins and how they are globally shaped in line with ecological mechanisms. Here we show that prokaryotic communities in the epipelagic Pacific and Atlantic Ocean, in the southern Indian Ocean, and the Mediterranean Sea are composed of modules of co-occurring taxa with similar environmental preferences. The relative partitioning of these modules varies along latitudinal and longitudinal gradients and are related to different hydrographic and biotic conditions. Homogeneous selection and dispersal limitation were identified as the major ecological mechanisms shaping these communities and their free-living (FL) and particle-associated (PA) fractions. Large-scale current systems govern the dispersal of prokaryotic modules leading to the highest diversity near subtropical fronts.


Assuntos
Filogenia , Oceanos e Mares , Oceano Pacífico , Oceano Atlântico , Oceano Índico , Mar Mediterrâneo
4.
Environ Microbiol ; 25(12): 3536-3555, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37705313

RESUMO

Diatoms as important phytoplankton components interact with and are colonized by heterotrophic bacteria. This colonization has been studied extensively in the past but a distinction between the bacterial colonization directly on diatom cells or on the aggregated organic material, exopolymeric substances (EPS), was little addressed. Here we show that the diatom Thalassiosira rotula and EPS were differently colonized by strains of Roseobacteraceae and Flavobacteriaceae in two and tree partner treatments and an enriched natural bacterial community as inoculum. In two partner treatments, the algae and EPS were generally less colonized than in the three partner treatments. Two strains benefitted greatly from the presence of another partner as the proportions of their subpopulations colonizing the diatom cell and the EPS were much enhanced relative to their two partner treatments. Highest proportions of bacteria colonizing the diatom and EPS occurred in the treatment inoculated with the enriched natural bacterial community. Dissolved organic carbon, amino acids and carbohydrates produced by T. rotula were differently used by the bacteria in the two and three partner treatments and most efficiently by the enriched natural bacterial community. Our approach is a valid model system to study physico-chemical bacteria-diatom interactions with increasing complexity.


Assuntos
Diatomáceas , Flavobacteriaceae , Gammaproteobacteria , Diatomáceas/metabolismo , Flavobacterium , Fitoplâncton
5.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37442617

RESUMO

Phytoplankton spring blooms are typical features in coastal seas and provide heterotrophic bacteria with a rich blend of dissolved substrates. However, they are difficult to study in coastal seas in-situ. Here, we induced a phytoplankton spring bloom and followed its fate for 37 days in four 600 L-mesocosms. To specifically investigate the significance of phytoplankton-born dissolved organic carbon (DOC) we used artificial seawater with low DOC background and inoculated it with a 100 µm-prefiltered plankton community from the North Sea. A biphasic bloom developed, dominated by diatoms and Phaeocystis globosa respectively. In between, bacterial numbers peaked, followed by a peak in virus-like particles, implying that virus infection caused the collapse. Concentrations of dissolved free amino acids exhibited rapid changes, in particular during the diatom bloom and until the peak in bacterial abundance. Dissolved combined amino acids and neutral monosaccharides accumulated continuously, accounting for 22% of DOC as a mean and reaching levels as high as 44%. Bacterial communities were largely dominated by Bacteroidetes, especially the NS3a marine group (family Flavobacteriaceae), but Rhodobacteraceae and Gammaproteobacteria were also prominent members. Our study shows rapid organic matter and community composition dynamics that are hard to trace in natural coastal ecosystems.


Assuntos
Diatomáceas , Flavobacteriaceae , Fitoplâncton/microbiologia , Ecossistema , Diatomáceas/microbiologia , Plâncton , Água do Mar/microbiologia
6.
ISME J ; 17(6): 836-845, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36914732

RESUMO

Vitamin B12 (cobalamin, herein B12) is an essential cofactor involved in amino acid synthesis and carbon resupply to the TCA cycle for most prokaryotes, eukaryotic microorganisms, and animals. Despite being required by most, B12 is produced by only a minor fraction of prokaryotes and therefore leads to complex interaction between prototrophs and auxotrophs. However, it is unknown how B12 is provided by prototrophs to auxotrophs. In this study, 33 B12 prototrophic alphaproteobacterial strains were grown in co-culture with Thalassiosira pseudonana, a B12 auxotrophic diatom, to determine the bacterial ability to support the growth of the diatom by sharing B12. Among these strains, 18 were identified to share B12 with the diatom, while nine were identified to retain B12 and not support growth of the diatom. The other bacteria either shared B12 with the diatom only with the addition of substrate or inhibited the growth of the diatom. Extracellular B12 measurements of B12-provider and B12-retainer strains confirmed that the cofactor could only be detected in the environment of the tested B12-provider strains. Intracellular B12 was measured by LC-MS and showed that the concentrations of the different B12-provider as well as B12-retainer strains differed substantially. Although B12 is essential for the vast majority of microorganisms, mechanisms that export this essential cofactor are still unknown. Our results suggest that a large proportion of bacteria that can synthesise B12 de novo cannot share the cofactor with their environment.


Assuntos
Diatomáceas , Vitamina B 12 , Vitamina B 12/metabolismo , Bactérias/genética , Bactérias/metabolismo , Diatomáceas/metabolismo , Vitaminas/metabolismo
7.
J Phycol ; 59(2): 309-322, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36471567

RESUMO

Interactions between marine diatoms and bacteria have been studied for decades. However, the visualization of physical interactions between these diatoms and their colonizers is still limited. To enhance our understanding of these specific interactions, a new Thalassiosira rotula isolate from the North Sea (strain 8673) was characterized by scanning electron microscopy and confocal laser scanning microscopy (CLSM) after staining with fluorescently labeled lectins targeting specific glycoconjugates. To investigate defined interactions of this strain with bacteria the new strain was made axenic and co-cultivated with a natural bacterial community and in two- or three-partner consortia with different bacteria of the Roseobacter group, Gammaproteobacteria and Bacteroidetes. The CLSM analysis of the consortia identified six out of 78 different lectins as very suitable to characterize glycoconjugates of T. rotula. The resulting images show that fucose-containing threads were the dominant glycoconjugates secreted by the T. rotula cells but chitin and to a lesser extent other glycoconjugates were also identified. Bacteria attached predominantly to the fucose glycoconjugates. The colonizing bacteria showed various attachment patterns such as adhering to the diatom threads in aggregates only or attaching to both the surfaces and the threads of the diatom. Interestingly the colonization patterns of single bacteria differed strikingly from those of bacterial co-cultures, indicating that interactions between two bacterial species impacted the colonization of the diatom. Our observations help to better understand physical interactions and specific colonization patterns of distinct bacterial mono- and co-cultures with an abundant diatom of costal seas.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Fucose/metabolismo , Bactérias/metabolismo , Ecossistema , Glicoconjugados/metabolismo , Lectinas/metabolismo
8.
Virus Evol ; 8(2): veac070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533142

RESUMO

The Microviridae family represents one of the major clades of single-stranded DNA (ssDNA) phages. Their cultivated members are lytic and infect Proteobacteria, Bacteroidetes, and Chlamydiae. Prophages have been predicted in the genomes from Bacteroidales, Hyphomicrobiales, and Enterobacteriaceae and cluster within the 'Alpavirinae', 'Amoyvirinae', and Gokushovirinae. We have isolated 'Ascunsovirus oldenburgi' ICBM5, a novel phage distantly related to known Microviridae. It infects Sulfitobacter dubius SH24-1b and uses both a lytic and a carrier-state life strategy. Using ICBM5 proteins as a query, we uncovered in publicly available resources sixty-five new Microviridae prophages and episomes in bacterial genomes and retrieved forty-seven environmental viral genomes (EVGs) from various viromes. Genome clustering based on protein content and phylogenetic analysis showed that ICBM5, together with Rhizobium phages, new prophages, episomes, and EVGs cluster within two new phylogenetic clades, here tentatively assigned the rank of subfamily and named 'Tainavirinae' and 'Occultatumvirinae'. They both infect Rhodobacterales. Occultatumviruses also infect Hyphomicrobiales, including nitrogen-fixing endosymbionts from cosmopolitan legumes. A biogeographical assessment showed that tainaviruses and occultatumviruses are spread worldwide, in terrestrial and marine environments. The new phage isolated here sheds light onto new and diverse branches of the Microviridae tree, suggesting that much of the ssDNA phage diversity remains in the dark.

9.
ISME J ; 16(12): 2653-2665, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36115923

RESUMO

Despite accumulating data on microbial biogeographic patterns in terrestrial and aquatic environments, we still lack a comprehensive understanding of how these patterns establish, in particular in ocean basins. Here we show the relative significance of the ecological mechanisms selection, dispersal and drift for shaping the composition of microbial communities in the Pacific Ocean over a transect of 12,400 km between subantarctic and subarctic regions. In the epipelagic, homogeneous selection contributes 50-60% and drift least to the three mechanism for the assembly of prokaryotic communities whereas in the upper mesopelagic, drift is relatively most important for the particle-associated subcommunities. Temperature is important for the relative significance of homogeneous selection and dispersal limitation for community assembly. The relative significance of both mechanisms was inverted with increasing temperature difference along the transect. For eukaryotes >8 µm, homogeneous selection is also the most important mechanisms at two epipelagic depths whereas at all other depths drift is predominant. As species interactions are essential for structuring microbial communities we further analyzed co-occurrence-based community metrics to assess biogeographic patterns over the transect. These interaction-adjusted indices explained much better variations in microbial community composition as a function of abiotic and biotic variables than compositional or phylogenetic distance measures like Bray-Curtis or UniFrac. Our analyses are important to better understand assembly processes of microbial communities in the upper layers of the largest ocean and how they adapt to effectively perform in global biogeochemical processes. Similar principles presumably act upon microbial community assembly in other ocean basins.


Assuntos
Microbiota , Oceano Pacífico , Filogenia , Eucariotos
10.
Front Pharmacol ; 13: 956541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091825

RESUMO

Essential oils (EOs) and their individual volatile organic constituents have been an inherent part of our civilization for thousands of years. They are widely used as fragrances in perfumes and cosmetics and contribute to a healthy diet, but also act as active ingredients of pharmaceutical products. Their antibacterial, antiviral, and anti-inflammatory properties have qualified EOs early on for both, the causal and symptomatic therapy of a number of diseases, but also for prevention. Obtained from natural, mostly plant materials, EOs constitute a typical example of a multicomponent mixture (more than one constituent substances, MOCS) with up to several hundreds of individual compounds, which in a sophisticated composition make up the property of a particular complete EO. The integrative use of EOs as MOCS will play a major role in human and veterinary medicine now and in the future and is already widely used in some cases, e.g., in aromatherapy for the treatment of psychosomatic complaints, for inhalation in the treatment of respiratory diseases, or topically administered to manage adverse skin diseases. The diversity of molecules with different functionalities exhibits a broad range of multiple physical and chemical properties, which are the base of their multi-target activity as opposed to single isolated compounds. Whether and how such a broad-spectrum effect is reflected in natural mixtures and which kind of pharmacological potential they provide will be considered in the context of ONE Health in more detail in this review.

11.
ISME J ; 16(11): 2599-2609, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35963899

RESUMO

Biotin (vitamin B7) is involved in a wide range of essential biochemical reactions and a crucial micronutrient that is vital for many pro- and eukaryotic organisms. The few biotin measurements in the world's oceans show that availability is subject to strong fluctuations. Numerous marine microorganisms exhibit biotin auxotrophy and therefore rely on supply by other organisms. Desthiobiotin is the primary precursor of biotin and has recently been detected at concentrations similar to biotin in seawater. The last enzymatic reaction in the biotin biosynthetic pathway converts desthiobiotin to biotin via the biotin synthase (BioB). The role of desthiobiotin as a precursor of biotin synthesis in microbial systems, however, is largely unknown. Here we demonstrate experimentally that bacteria can overcome biotin auxotrophy if they retain the bioB gene and desthiobiotin is available. A genomic search of 1068 bacteria predicts that the biotin biosynthetic potential varies greatly among different phylogenetic groups and that 20% encode solely bioB and thus can potentially overcome biotin auxotrophy. Many Actino- and Alphaproteobacteria cannot synthesize biotin de novo, but some possess solely bioB, whereas the vast majority of Gammaproteobacteria and Flavobacteriia exhibit the last four crucial biotin synthesis genes. We detected high intra- and extracellular concentrations of the precursor relative to biotin in the prototrophic bacterium, Vibrio campbellii, with extracellular desthiobiotin reaching up to 1.09 ± 0.15*106 molecules per cell during exponential growth. Our results provide evidence for the ecological role of desthiobiotin as an escape route to overcome biotin auxotrophy for bacteria in the ocean and presumably in other ecosystems.


Assuntos
Biotina , Ecossistema , Bactérias/genética , Bactérias/metabolismo , Biotina/análogos & derivados , Biotina/metabolismo , Micronutrientes , Filogenia , Vitaminas
12.
Front Microbiol ; 13: 895875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836413

RESUMO

Basin-scale biogeographic observations of marine pelagic pro- and eukaryotic communities are necessary to understand forces driving community composition and for providing a baseline to monitor global change. Deep sequencing of rRNA genes provides community composition at high resolution; yet, it is unclear how the choice of primers affects biogeographic patterns. Here, we re-amplified 16S rRNA genes from DNA sampled during R/V Polarstern Cruise ANT28-5 over a latitudinal transect across the Atlantic Ocean from 52°S to 47°N using universal V4-V5 primers and compared the results with those obtained previously with V5-V6 bacteria-specific primers. For validation of our results, we inferred community composition based on 16S rRNA genes of metagenomes from the same stations and single amplified genomes (SAGs) from the Global Ocean Reference Genome (GORG) database. We found that the universal V4-V5 primers retrieved SAR11 clades with similar relative proportions as those found in the GORG database while the V5-V6 primers recovered strongly diverging clade abundances. We confirmed an inverse bell-shaped distance-decay relationship and a latitudinal diversity gradient that did not decline linearly with absolute latitude in the Atlantic Ocean. Patterns were modified by sampling depth, sequencing depth, choice of primers, and abundance filtering. Especially richness patterns were not robust to methodological change. This study offers a detailed picture of the Atlantic Ocean microbiome using a universal set of PCR primers that allow for the conjunction of biogeographical patterns among organisms from different domains of life.

13.
ISME J ; 16(8): 2002-2014, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35585186

RESUMO

Genome analyses predict that the cofactor cobalamin (vitamin B12, called B12 herein) is produced by only one-third of all prokaryotes but almost all encode at least one B12-dependent enzyme, in most cases methionine synthase. This implies that the majority of prokaryotes relies on exogenous B12 supply and interacts with producers. B12 consists of a corrin ring centred around a cobalt ion and the lower ligand 5'6-dimethylbenzimidazole (DMB). It has never been tested whether availability of this pivotal cofactor, DMB or its intermediate α-ribazole affect growth and composition of prokaryotic microbial communities. Here we show that in the subtropical, equatorial and polar frontal Pacific Ocean supply of B12 and α-ribazole enhances heterotrophic prokaryotic production and alters the composition of prokaryotic and heterotrophic protist communities. In the polar frontal Pacific, the SAR11 clade and Oceanospirillales increased their relative abundances upon B12 supply. In the subtropical Pacific, Oceanospirillales increased their relative abundance upon B12 supply as well but also downregulated the transcription of the btuB gene, encoding the outer membrane permease for B12. Surprisingly, Prochlorococcus, known to produce pseudo-B12 and not B12, exhibited significant upregulation of genes encoding key proteins of photosystem I + II, carbon fixation and nitrate reduction upon B12 supply in the subtropical Pacific. These findings show that availability of B12 and α-ribazole affect growth and composition of prokaryotic and protist communities in oceanic systems thus revealing far-reaching consequences of methionine biosynthesis and other B12-dependent enzymatic reactions on a community level.


Assuntos
Ribonucleosídeos , Vitamina B 12 , Ligantes , Vitamina B 12/metabolismo , Vitaminas
14.
Nat Commun ; 13(1): 456, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075131

RESUMO

Microbial communities are major drivers of global elemental cycles in the oceans due to their high abundance and enormous taxonomic and functional diversity. Recent studies assessed microbial taxonomic and functional biogeography in global oceans but microbial functional biogeography remains poorly studied. Here we show that in the near-surface Atlantic and Southern Ocean between 62°S and 47°N microbial communities exhibit distinct taxonomic and functional adaptations to regional environmental conditions. Richness and diversity showed maxima around 40° latitude and intermediate temperatures, especially in functional genes (KEGG-orthologues, KOs) and gene profiles. A cluster analysis yielded three clusters of KOs but five clusters of genes differing in the abundance of genes involved in nutrient and energy acquisition. Gene profiles showed much higher distance-decay rates than KO and taxonomic profiles. Biotic factors were identified as highly influential in explaining the observed patterns in the functional profiles, whereas temperature and biogeographic province mainly explained the observed taxonomic patterns. Our results thus indicate fine-tuned genetic adaptions of microbial communities to regional biotic and environmental conditions in the Atlantic and Southern Ocean.


Assuntos
Bactérias/genética , Microbiota , Água do Mar/microbiologia , Oceano Atlântico , Bactérias/classificação , Bactérias/isolamento & purificação , Variação Genética , Filogenia , Filogeografia , Água do Mar/química , Temperatura
15.
Front Microbiol ; 12: 696398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354692

RESUMO

In the recent past many studies investigated the microbiome of plants including several medicinal plants (MP). Microbial communities of the associated soil, rhizosphere and the above-ground organs were included, but there is still limited information on their seasonal development, and in particular simultaneous investigations of different plant organs are lacking. Many studies predominantly addressed either the prokaryotic or fungal microbiome. A distinction of epi- and endophytic communities of above-ground plant organs has rarely been made. Therefore, we conducted a comprehensive investigation of the bacterial and fungal microbiome of the MP Achillea millefolium and studied the epi- and endophytic microbial communities of leaves, flower buds and flowers between spring and summer together with the microbiome of the associated soil at one location. Further, we assessed the core microbiome of Achillea from four different locations at distances up to 250 km in southern Germany and Switzerland. In addition, the bacterial and fungal epi- and endophytic leaf microbiome of the arborescent shrub Hamamelis virginiana and the associated soil was investigated at one location. The results show a generally decreasing diversity of both microbial communities from soil to flower of Achillea. The diversity of the bacterial and fungal endophytic leaf communities of Achillea increased from April to July, whereas that of the epiphytic leaf communities decreased. In contrast, the diversity of the fungal communities of both leaf compartments and that of epiphytic bacteria of Hamamelis increased over time indicating plant-specific differences in the temporal development of microbial communities. Both MPs exhibited distinct microbial communities with plant-specific but also common taxa. The core taxa of Achillea constituted a lower fraction of the total number of taxa than of the total abundance of taxa. The results of our study provide a basis to link interactions of the microbiome with their host plant in relation to the production of bioactive compounds.

16.
Front Microbiol ; 12: 628055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912144

RESUMO

Carbohydrate-active enzymes (CAZymes) are an important feature of bacteria in productive marine systems such as continental shelves, where phytoplankton and macroalgae produce diverse polysaccharides. We herein describe Maribacter dokdonensis 62-1, a novel strain of this flavobacterial species, isolated from alginate-supplemented seawater collected at the Patagonian continental shelf. M. dokdonensis 62-1 harbors a diverse array of CAZymes in multiple polysaccharide utilization loci (PUL). Two PUL encoding polysaccharide lyases from families 6, 7, 12, and 17 allow substantial growth with alginate as sole carbon source, with simultaneous utilization of mannuronate and guluronate as demonstrated by HPLC. Furthermore, strain 62-1 harbors a mixed-feature PUL encoding both ulvan- and fucoidan-targeting CAZymes. Core-genome phylogeny and pangenome analysis revealed variable occurrence of these PUL in related Maribacter and Zobellia strains, indicating specialization to certain "polysaccharide niches." Furthermore, lineage- and strain-specific genomic signatures for exopolysaccharide synthesis possibly mediate distinct strategies for surface attachment and host interaction. The wide detection of CAZyme homologs in algae-derived metagenomes suggests global occurrence in algal holobionts, supported by sharing multiple adaptive features with the hydrolytic model flavobacterium Zobellia galactanivorans. Comparison with Alteromonas sp. 76-1 isolated from the same seawater sample revealed that these co-occurring strains target similar polysaccharides but with different genomic repertoires, coincident with differing growth behavior on alginate that might mediate ecological specialization. Altogether, our study contributes to the perception of Maribacter as versatile flavobacterial polysaccharide degrader, with implications for biogeochemical cycles, niche specialization and bacteria-algae interactions in the oceans.

17.
Environ Microbiol ; 23(6): 3130-3148, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33876546

RESUMO

Polysaccharide particles are important substrates and microhabitats for marine bacteria. However, substrate-specific bacterial dynamics in mixtures of particle types with different polysaccharide composition, as likely occurring in natural habitats, are undescribed. Here, we studied the composition, functional diversity and gene expression of marine bacterial communities colonizing a mix of alginate and pectin particles. Amplicon, metagenome and metatranscriptome sequencing revealed that communities on alginate and pectin particles significantly differed from their free-living counterparts. Unexpectedly, microbial dynamics on alginate and pectin particles were similar, with predominance of amplicon sequence variants (ASVs) from Tenacibaculum, Colwellia, Psychrobium and Psychromonas. Corresponding metagenome-assembled genomes (MAGs) expressed diverse alginate lyases, several colocalized in polysaccharide utilization loci. Only a single, low-abundant MAG showed elevated transcript abundances of pectin-degrading enzymes. One specific Glaciecola ASV dominated the free-living fraction, possibly persisting on particle-derived oligomers through different glycoside hydrolases. Elevated ammonium uptake and metabolism signified nitrogen as an important factor for degrading carbon-rich particles, whereas elevated methylcitrate and glyoxylate cycles suggested nutrient limitation in surrounding waters. The bacterial preference for alginate, whereas pectin primarily served as colonization scaffold, illuminates substrate-driven dynamics within mixed polysaccharide pools. These insights expand our understanding of bacterial niche specialization and the biological carbon pump in macroalgae-rich habitats.


Assuntos
Alginatos , Gammaproteobacteria , Bactérias/genética , Gammaproteobacteria/genética , Metagenoma , Pectinas
18.
Environ Microbiol ; 22(11): 4779-4793, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32935476

RESUMO

It remains unknown whether and to what extent marine prokaryotic communities are capable of degrading plastic in the ocean. To address this knowledge gap, we combined enrichment experiments employing low-density polyethylene (LDPE) as the sole carbon source with a comparison of bacterial communities on plastic debris in the Pacific, the North Atlantic and the northern Adriatic Sea. A total of 35 operational taxonomic units (OTUs) were enriched in the LDPE-laboratory incubations after 1 year, of which 20 were present with relative abundances > 0.5% in at least one plastic sample collected from the environment. From these, OTUs classified as Cognatiyoonia, Psychrobacter, Roseovarius and Roseobacter were found in the communities of plastics collected at all oceanic sites. Additionally, OTUs classified as Roseobacter, Pseudophaeobacter, Phaeobacter, Marinovum and Cognatiyoonia, also enriched in the LDPE-laboratory incubations, were enriched on LDPE communities compared to the ones associated to glass and polypropylene in in-situ incubations in the northern Adriatic Sea after 1 month of incubation. Some of these enriched OTUs were also related to known alkane and hydrocarbon degraders. Collectively, these results demonstrate that there are prokaryotes capable of surviving with LDPE as the sole carbon source living on plastics in relatively high abundances in different water masses of the global ocean.


Assuntos
Bactérias/metabolismo , Microbiota , Plásticos/metabolismo , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Oceanos e Mares , Polietileno/metabolismo
19.
Sci Rep ; 10(1): 809, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964928

RESUMO

Ecological differentiation between strains of bacterial species is shaped by genomic and metabolic variability. However, connecting genotypes to ecological niches remains a major challenge. Here, we linked bacterial geno- and phenotypes by contextualizing pangenomic, exometabolomic and physiological evidence in twelve strains of the marine bacterium Alteromonas macleodii, illuminating adaptive strategies of carbon metabolism, microbial interactions, cellular communication and iron acquisition. In A. macleodii strain MIT1002, secretion of amino acids and the unique capacity for phenol degradation may promote associations with Prochlorococcus cyanobacteria. Strain 83-1 and three novel Pacific isolates, featuring clonal genomes despite originating from distant locations, have profound abilities for algal polysaccharide utilization but without detrimental implications for Ecklonia macroalgae. Degradation of toluene and xylene, mediated via a plasmid syntenic to terrestrial Pseudomonas, was unique to strain EZ55. Benzoate degradation by strain EC673 related to a chromosomal gene cluster shared with the plasmid of A. mediterranea EC615, underlining that mobile genetic elements drive adaptations. Furthermore, we revealed strain-specific production of siderophores and homoserine lactones, with implications for nutrient acquisition and cellular communication. Phenotypic variability corresponded to different competitiveness in co-culture and geographic distribution, indicating linkages between intraspecific diversity, microbial interactions and biogeography. The finding of "ecological microdiversity" helps understanding the widespread occurrence of A. macleodii and contributes to the interpretation of bacterial niche specialization, population ecology and biogeochemical roles.


Assuntos
Alteromonas/fisiologia , Adaptação Biológica , Alteromonas/metabolismo , Variação Biológica da População , Ecossistema , Ecótipo , Variação Genética , Genoma Bacteriano , Ferro/metabolismo , Oceano Pacífico , Filogenia , Plasmídeos , Polissacarídeos/metabolismo , Prochlorococcus/fisiologia , Água do Mar/microbiologia , Alga Marinha/metabolismo , Metabolismo Secundário
20.
Front Microbiol ; 11: 552135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408696

RESUMO

The marine roseobacter-clade affiliated cluster (RCA) represents one of the most abundant groups of bacterioplankton in the global oceans, particularly in temperate and sub-polar regions. They play a key role in the biogeochemical cycling of various elements and are important players in oceanic climate-active trace gas metabolism. In contrast to copiotrophic roseobacter counterparts such as Ruegeria pomeroyi DSS-3 and Phaeobacter sp. MED193, RCA bacteria are truly pelagic and have smaller genomes. We have previously shown that RCA bacteria do not appear to encode the PlcP-mediated lipid remodeling pathway, whereby marine heterotrophic bacteria remodel their membrane lipid composition in response to phosphorus (P) stress by substituting membrane glycerophospholipids with alternative glycolipids or betaine lipids. In this study, we report lipidomic analysis of six RCA isolates. In addition to the commonly found glycerophospholipids such as phosphatidylglycerol (PG) and phosphatidylethanolamine (PE), RCA bacteria synthesize a relatively uncommon phospholipid, acylphosphatidylglycerol, which is not found in copiotrophic roseobacters. Instead, like the abundant SAR11 clade, RCA bacteria upregulate ornithine lipid biosynthesis in response to P stress, suggesting a key role of this aminolipid in the adaptation of marine heterotrophs to oceanic nutrient limitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...